Object-Oriented Programming |

Classes, Attributes, Methods, and Instances

Brief Outline

#0

Brief Outline

® What is object-oriented programming!?

#0

Brief Outline

® What is object-oriented programming!?

® How do | implement it in Python?

#0

Brief Outline

® What is object-oriented programming!?
® How do | implement it in Python?

® Basic examples

#0

Procedural Programming

U.S. DEPARTHMENT O

A »" .
4 . ! P
» P, ' %
At \ : L O
$ g . N - »
, y ‘ \ 5 ! \ 3 Ny
g - .
S ’ ‘ ' .

o ks
F THE INTERIOR, NATIONAL FARK SERYICE, EDISON NATIONAL HISTORIC SITE

function | (varl, var2, etc.)

%

function2(var3,var4,etc.)

function3(var5,varé,etc.)

Final Product

Hl

Procedural Programming

® This has been the mainstay of much scientific
programming, and it works well.

® But it can get very messy when you have a
complex program with lots of interacting
parts

® Particularly when data has to be shared and
modified between many functions

#2

What is Object-Oriented
Programming!?

#3

What is Object-Oriented
Programming!?

Answer la: Ask an expert

#3

What is Object-Oriented
Programming!?

Answer la: Ask an expert

#3

What is Object-Oriented
Programming!?

#4

What is Object-Oriented
Programming!?

Answer |b: Ask ar-expert Wikipedia

#4

What is Object-Oriented
Programming!?

Object-oriented programming (OOP) is a
programming paradigm that uses "objects” —
data structures consisting of data fields and
methods together with their interactions — to
design applications and computer programs.
Programming techniques may include features
such as data abstraction, encapsulation,
modularity, polymorphism, and inheritance.

Answer Ib: Ask an-expert Wikipedia 14

What is Object-Oriented
Programming!?

#5

What is Object-Oriented
Programming!?

Objects are like animals: they know how to do stuff (like eat
and sleep), they know how to interact with others (like make
children), and they have characteristics (like height, weight).

#5

What is Object-Oriented
Programming?

Objects are like animals: they know how to do stuff (like eat
and sleep), they know how to interact with others (like make
children), and they have characteristics (like height, weight).

#5

What is Object-Oriented
Programming?

Characteristics

- Color, Height,Weight

Objects are like animals: they know how to do stuff (like eat
and sleep), they know how to interact with others (like make

children), and they have characteristics (like height, weight).
#5

What is Object-Oriented
Programming?

Characteristics

- Color, Height,Weight

Does Things

—> Eat, Sleep, Growl, Cheer

Objects are like animals: they know how to do stuff (like eat
and sleep), they know how to interact with others (like make

children), and they have characteristics (like height, weight).
#5

What is Object-Oriented
Programming?

Characteristics

- Color, Height,Weight

Does Things

—> Eat, Sleep, Growl, Cheer

Interaction

-» Parents, siblings, friends

Objects are like animals: they know how to do stuff (like eat
and sleep), they know how to interact with others (like make

children), and they have characteristics (like height, weight).
#5

What is Object-Oriented
Programming!?

#6

What is Object-Oriented
Programming!?

An object is a programming structure that allows you to
group together variables (characteristics) and functions (doing
things) in one nice, tidy package. In Python, the blueprint for
an object is referred to as a class.

#6

What is Object-Oriented
Programming!?

An object is a programming structure that allows you to
group together variables (characteristics) and functions (doing
things) in one nice, tidy package. In Python, the blueprint for
an object is referred to as a class.

#6

What is Object-Oriented
Programming!?

Within a class, the variables are referred to as attributes and
the functions are referred to as methodes.

H#7

What is Object-Oriented
Programming!?

Instances are specific realizations of a class

#8

What is Object-Oriented
Programming!?

Instances are specific realizations of a class

#8

What is Object-Oriented
Programming!?

Instances are specific realizations of a class

#8

Object Syntax in Python

#9

Object Syntax in Python

#9

Object Syntax in Python

#9

Object Syntax in Python

class ClassName[(BaseClasses)]:

“mr Documentation String]"""

#9

Object Syntax in Python

class ClassName[(BaseClasses)]:

“mr Documentation String]"""

#9

Object Syntax in Python

class ClassName[(BaseClasses)]:
“mr Documentation String]"""

[Statementl] # Executed only when class is defined

#9

Object Syntax in Python

class ClassName[(BaseClasses)]:
“mr Documentation String]"""

[Statementl] # Executed only when class is defined
[Statement?2]

#9

Object Syntax in Python

class ClassName[(BaseClasses)]:
“mr Documentation String]"""

[Statementl] # Executed only when class is defined
[Statement?2]

#9

Object Syntax in Python

class ClassName[(BaseClasses)]:
“mr Documentation String]"""

[Statementl] # Executed only when class is defined
[Statement?2]

[Variablel] # “Global” class variables can be defined here

#9

Object Syntax in Python

class ClassName[(BaseClasses)]:
“mr Documentation String]"""

[Statementl] # Executed only when class is defined
[Statement?2]

[Variablel] # “Global” class variables can be defined here

#9

Object Syntax in Python

class ClassName[(BaseClasses)]:
“mr Documentation String]"""

[Statementl] # Executed only when class is defined
[Statement?2]

[Variablel] # “Global” class variables can be defined here

def Methodl (self, args, kwargs={}):

#9

Object Syntax in Python

class ClassName[(BaseClasses)]:
“mr Documentation String]"""

[Statementl] # Executed only when class is defined
[Statement?2]

[Variablel] # “Global” class variables can be defined here

def Methodl (self, args, kwargs={}):
Performs task 1

#9

Object Syntax in Python

class ClassName[(BaseClasses)]:
“mr Documentation String]"""

[Statementl] # Executed only when class is defined
[Statement?2]

[Variablel] # “Global” class variables can be defined here

def Methodl (self, args, kwargs={}):
Performs task 1

#9

Bear: Our first Python class

#10

Bear: Our first Python class

>>> class Bear:

#10

Bear: Our first Python class

We are defining a new
>>> class Bear: class named Bear.
Note the lack of
parentheses. These are
only used if the class is
derived from other
classes (more on this
next lecture).

#10

Bear: Our first Python class

>>> class Bear:

#10

Bear: Our first Python class

>>> class Bear:
print "The bear class is now defined."

#10

Bear: Our first Python class

>>> class Bear:
print "The bear class is now defined."

#10

Bear: Our first Python class

>>> class Bear:
print "The bear class is now defined."

This print statement is
executed only when
the class is defined.

#10

Bear: Our first Python class

>>> class Bear:
print "The bear class is now defined."

The bear class is now defined. Thls Print Statement iS
executed only when
the class is defined.

#10

Bear: Our first Python class

>>> class Bear:
print "The bear class is now defined."

The bear class is now defined.

#10

Bear: Our first Python class

>>> class Bear:
print "The bear class is now defined."

The bear class is now defined.
>>> a = Bear

#10

Bear: Our first Python class

>>> class Bear:

print "The bear class is now defined.” This statement equates
The bear class is now defined. the ObjeCt a to the
T oe T Bear class Bear. This is
typically not very
useful.

#10

Bear: Our first Python class

>>> class Bear:

print "The bear class is now defined." This statement equates
Dhe beew eless Lo mew desineel. the object a to the
o class Bear. This is
typically not very
useful.

#10

Bear: Our first Python class

>>> class Bear:

print "The bear class is now defined." This statement equates
The bear class is now defined. the ObjeCt a to the
—a class Bear. This is
<class main .Bear at 0x10041d9b0> t)’PiC&”)’ not very
useful.

#10

Bear: Our first Python class

>>> class Bear:
print "The bear class is now defined."

The bear class is now defined.
>>> a = Bear
>>> a

<class main_ .Bear at 0x10041d9b0>

#10

Bear: Our first Python class

>>> class Bear:
print "The bear class is now defined."

The bear class is now defined.

>>> a = Bear

>>> a

<class main_ .Bear at 0x10041d9b0>
>>> a = Bear()

#10

Bear: Our first Python class

>>> class Bear:

«o print "The bear class is now defined."
The bear class is now defined.

>>> a = Bear

>>> g

<class main_ .Bear at 0x10041d9b0>

>>> a = Bear()

>>> g

#10

Bear: Our first Python class

>>> class Bear:

«o print "The bear class is now defined."
The bear class is now defined.

>>> a = Bear

>>> g

<class main_ .Bear at 0x10041d9b0>

>>> a = Bear()

>>> g

< main_ .Bear instance at 0x100433cb0>

#10

Bear: Our first Python class

>>> class Bear:
print "The bear class is now defined."

By adding parenthesis,
The b 1 i defined. .
o> o = Boar we are creating a new

>>> g .
<class @ main .Bear at 0x10041d9b0> ’nStance Of the CIaSS
SO Bear.

>>> g

< main_ .Bear instance at 0x100433cb0>

#10

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.
>>> a = Bear()

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.

>>> a = Bear()
>>> a.name

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.
>>> a = Bear()
>>> a.name

Object attributes are
accessed with the

€¢I

.’ (period) operator

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.
>>> a = Bear()
>>> a.name

Traceback (most recent call last): Ob]eCt a_ttr'|bL|teS are
accessed with the

€¢I

.’ (period) operator

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.
>>> a = Bear()
>>> a.name

Traceback (most recent call last): Ob]ect attr|butes are
File "<stdin>", line 1, in <module> .
accessed with the

€¢I

.’ (period) operator

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.
>>> a = Bear()
>>> a.name

Traceback (most recent call last): Ob]eCt attr'|butes are
File "<stdin>", line 1, in <module> .
AttributeError: Bear instance has no attribute 'name'’ accessed Wlth the

€€

.’ (period) operator

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.

>>> a = Bear() (Instance-specific)
>>> a.name
Traceback (most recent call last): attr|butes can be
File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name' Created and deleted
outside of the class
definition

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.

>>> a = Bear() (Instance-specific)
>>> a.name
Traceback (most recent call last): attr|butes can be
File "<stdin>", line 1, in <module>

AttributeError: Bear instance has no attribute 'name’ Created and deleted
>>> a.name = "Oski" .

outside of the class

definition

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.

>>> a = Bear() (Instance-specific)

>>> a.name

Traceback (most recent call last): attr|butes can be
File "<stdin>", line 1, in <module>

AttributeError: Bear instance has no attribute 'name'’ Created and deleted

>>> a.name = "Oski" .

>>> a.color = "Brown" OUtSlde Of the CIaSS

definition

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.

>>> a = Bear() (Instance-specific)

>>> a.name

Traceback (most recent call last): attr|butes can be
File "<stdin>", line 1, in <module>

AttributeError: Bear instance has no attribute 'name'’ Created and deleted

>>> a.name = "Oski" .

>>> a.color = "Brown" OUtSlde Of the CIaSS

>>> del(a.name)

definition

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.

>>> a = Bear() (Instance-specific)

>>> a.name

Traceback (most recent call last): attr|butes can be
File "<stdin>", line 1, in <module>

AttributeError: Bear instance has no attribute 'name’ Created and deleted

>>> a.name = "Oski" .

>>> a.color = "Brown" OUtSlde Of the CIaSS

>>> del(a.name) o, o

55 P definition

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.

>>> a = Bear() (Instance-specific)

>>> a.name

Traceback (most recent call last): attr|butes can be
File "<stdin>", line 1, in <module>

AttributeError: Bear instance has no attribute 'name’ Created and deleted

>>> a.name = "Oski" .

>>> a.color = "Brown" OUtSlde Of the CIaSS

>>> del(a.name) o, o

55 P definition

Traceback (most recent call last):

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.

>>> a = Bear() (Instance-specific)

>>> a.name

Traceback (most recent call last): attr|butes can be
File "<stdin>", line 1, in <module>

AttributeError: Bear instance has no attribute 'name’ Created and deleted

>>> a.name = "Oski" .

>>> a.color = "Brown" OUtSlde Of the CIaSS

>>> del(a.name) o, o

55 P definition

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

#1

Attributes: Access, Creation,
Deletion

>>> class Bear:
print "The bear class is now defined.”

The bear class is now defined.

>>> a = Bear() (Instance-specific)

>>> a.name

Traceback (most recent call last): attr|butes can be
File "<stdin>", line 1, in <module>

AttributeError: Bear instance has no attribute 'name’ Created and deleted

>>> a.name = "Oski" .

>>> a.color = "Brown" OUtSlde Of the CIaSS

>>> del(a.name) o, o

55 P definition

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'’

#1

Methods: Access, Creation, and
(not) Deletion

>>> class Bear:

print "The bear class is now defined." Methods are defined in
the same way normal
functions are (note
that we will return to

the self object in a few
slides)

#12

Methods: Access, Creation, and
(not) Deletion

>>> class Bear:

print "The bear class is now defined." Methods are deﬁned N
def say hello(self):
the same way normal
functions are (note
that we will return to

the self object in a few
slides)

#12

Methods: Access, Creation, and
(not) Deletion

>>> class Bear:

print "The bear class is now defined." MethOdS are deﬁned in
def say hello(self):
print "Hello, world! I am a bear." the same Wa,y normal

functions are (note
that we will return to

the self object in a few
slides)

#12

Methods: Access, Creation, and
(not) Deletion

>>> class Bear:

print "The bear class is now defined." MethOdS are deﬁned in
def say hello(self):
print "Hello, world! I am a bear." the same Wa,y normal

functions are (note
that we will return to

the self object in a few
slides)

#12

Methods: Access, Creation, and
(not) Deletion

>>> class Bear:

print "The bear class is now defined." Methods are defined in
def say hello(self):
print "Hello, world! I am a bear." the same Wa,y normal
The bear class is now defined. funCtionS alre (nOte

that we will return to

the self object in a few
slides)

#12

Methods: Access, Creation, and
(not) Deletion

>>> class Bear:

print "The bear class is now defined." Like attribUtes,
def say hello(self):
print "Hello, world! I am a bear." methOdS are aISO
The bear class is now defined. accessed Via. the “.”

>>> a = Bear()

operator. Parentheses
indicate the method
should be executed.

#12

>>>

The
>>>
>>>

Methods: Access, Creation, and
(not) Deletion

class Bear:

print "The bear class is now defined.”

def say hello(self):
print "Hello, world!

bear class is now defined.
a = Bear()
a.say hello

I am a bear."

Like attributes,
methods are also

accessed via the
operator. Parentheses

indicate the method

should be executed.

#12

Methods: Access, Creation, and
(not) Deletion

>>> class Bear:

print "The bear class is now defined." Like attribUtes,
def say hello(self):
print "Hello, world! I am a bear." methOdS are aISO
The bear class is now defined. accessed via the “.”
>>> a = Bear()
o> a.say hello operator. Parentheses

<bound method Bear.say hello of < main .Bear
instance at 0x100433el18>>

indicate the method
should be executed.

#12

Methods: Access, Creation, and
(not) Deletion

>>> class Bear:

print "The bear class is now defined." Like attribUtes,
def say hello(self):
print "Hello, world! I am a bear." methOdS are aISO
The bear class is now defined. accessed via the “.”
>>> a = Bear()
o> a.say hello operator. Parentheses

<bound method Bear.say hello of < main .Bear

instance at 0x100433el18>> |nd|Ca.te the methOd
w77 a-say_hetie) should be executed.

#12

Methods: Access, Creation, and
(not) Deletion

>>> class Bear:

print "The bear class is now defined." Lil(e attribUteS,
def say hello(self):
print "Hello, world! I am a bear." methOdS are aISO

The bear class is now defined. accessed Via. the “.”
>>> a = Bear()
o> a.say hello operator. Parentheses
<bound method Bear.say hello of < main .Bear . .
instance at 0x100433e18>> |nd|Ca.te the methOd
>>> a.say hello() ShOUId be eXeCUted-

Hello, world! I am a bear.

#12

The init method

>>> class Bear:

__init___is a special
Python method. It is
always run when a new
instance of a class is
created.

#13

The init method

>>> class Bear:
def init (self, name):

__init___is a special
Python method. It is
always run when a new
instance of a class is
created.

#13

The init method

>>> class Bear:
def init (self, name):
self.name = name

__init___is a special
Python method. It is
always run when a new
instance of a class is
created.

#13

The init method

>>> class Bear:
def init (self, name):
self.name = name
def say hello(self):

__init___is a special
Python method. It is
always run when a new
instance of a class is
created.

#13

The init method

>>> class Bear:
def init (self, name):
self.name = name
def say hello(self):
print "Hello, world!

I am a bear."

__init___is a special
Python method. It is
always run when a new
instance of a class is
created.

#13

The init method

>>> class Bear:
def init (self, name):
self.name = name
def say hello(self):
print "Hello, world! I am a bear."

print “My name is %s.” % self.name __init__is a special
Python method. It is
always run when a new
instance of a class is
created.

#13

The init method

>>> class Bear:
def init (self, name):
self.name = name
def say hello(self):
print "Hello, world! I am a bear."

print “My name is %s.” % self.name __init__is a special
Python method. It is
always run when a new
instance of a class is
created.

#13

The init method

>>> class Bear:

def init (self, name):
self.name = name
def say_hello(self): Arguments specified
print "Hello, world! I am a bear.” L
print “My name is %s.” % self.name b)l _’nlt_ Mmust be
>>> a = Bear() PrOV|ded When

creating a new instance
of a class (else an
Exception will be
thrown)

#13

The init

>>> class Bear:
def init (self, name):
self.name = name
def say hello(self):
print "Hello, world!
print “My name is %s.” % self.name

>>> a = Bear()
Traceback (most recent call last):

I am a bear."

method

Arguments specified
by __init__ must be
provided when
creating a new instance
of a class (else an
Exception will be
thrown)

#13

The init

>>> class Bear:
def init (self, name):
self.name = name
def say hello(self):
print "Hello, world!
print “My name is %s.” % self.name

>>> a = Bear()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

I am a bear."

method

Arguments specified
by __init__ must be
provided when
creating a new instance
of a class (else an
Exception will be
thrown)

#13

The init

>>> class Bear:
def init (self, name):
self.name = name
def say hello(self):
print "Hello, world!
print “My name is %s.” % self.name

>>> a = Bear()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: init () takes exactly 2

arguments (1 given)

I am a bear."

method

Arguments specified
by __init__ must be
provided when
creating a new instance
of a class (else an
Exception will be
thrown)

#13

The init

>>> class Bear:
def init (self, name):
self.name = name
def say hello(self):
print "Hello, world!
print “My name is %s.” % self.name

>>> a = Bear()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: init () takes exactly 2

arguments (1 given)

>>> a = Bear(“Yogi”)

I am a bear."

method

Arguments specified
by __init__ must be
provided when
creating a new instance
of a class (else an
Exception will be
thrown)

#13

Scope: self and “class” variables

#14

Scope: self and “class” variables

#14

Scope: self and “class™ variables

>>> class Bear:

Class-wide
(“global™)
attributes can be
declared. It is
good style to do
this before the
init method.

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

Class-wide
(“global™)
attributes can be
declared. It is
good style to do
this before the
init method.

#14

Scope: self and “class” variables

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

They are accessed
in the same way as
“instance-specific”
attributes, but
using the class
name instead of
the instance name.

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0
def init (self, name):

They are accessed
in the same way as
“instance-specific”
attributes, but
using the class
name instead of
the instance name.

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0
def init (self, name):

SRS S Rt They are accessed
in the same way as
“instance-specific”
attributes, but
using the class
name instead of
the instance name.

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0
def init (self, name):

SGUEHENEE = Beti They are accessed
Bear.population += 1
in the same way as
“instance-specific”
attributes, but
using the class
name instead of
the instance name.

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0
def init (self, name):

self.nare = name They are accessed
ear.population += 1
def say hello(self): in the Same Wa)’ as
“instance-specific”
attributes, but
using the class
name instead of
the instance name.

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0
def init (self, name):

self.name - name They are accessed
T o, meeldl © am & bosmt in the same way as
“instance-specific”
attributes, but
using the class
name instead of
the instance name.

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0
def init (self, name):

e mapalation i 1 They are accessed
o e meldl T o B in the same way as
print “My name is $s.” % self.name “instance-speciﬁc”
attributes, but
using the class
name instead of
the instance name.

#14

Scope: self and “class™ variables

>>> class Bear:

population = 0
def init (self, name):
self.name = name They are accessed
Bear.population += 1
O int vHelio. world! T am a bear.’ in the same way as
brint “ am namber 5i.” s sear.population INStance-specific”
attributes, but
using the class
name instead of
the instance name.

#14

Scope: self and “class™ variables

>>> class Bear:

population = 0
def init (self, name):
self.name = name They are accessed
Bear.population += 1
O int vHelio. world! T am a bear.’ in the same way as
brint “ am namber 5i.” s sear.population INStance-specific”
attributes, but
using the class
name instead of
the instance name.

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def _init (self, name): The self variable is
self.name = name
Bear.population += 1

def say hello(self): d PlacehOIder for
print "Hello, world! I am a bear."” .
print “My name is %s.” % self.name the SPeCIﬁC
print “I am number %i.” % Bear.population

instance of a class.
Attributes
referenced to self
are known as
“object” attributes.

#14

Scope: self and “class™ variables

>>> class Bear:

population = 0
def init (self, name): .
SCIERETD & RS It should be listed
Bear.population += 1
" rint “rello, worldi I am a bear. as a required
print “My name is %s.” % self.name .
print “I am number %i.” % Bear.population argument IN a”
class methods
(even if it is not
explicitly used by
the method).

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Ca”ing a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

instance of a class,

the self variable is

NOT passed
(Python handles
this for you)

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Ca”ing a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

instance of a class,
the self variable is
NOT passed
(Python handles
this for you)

>>> a = Bear(“Yogi”)

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Ca”ing a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

NOT passed
(Python handles
this for you)

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Ca”ing a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

Rello, world! T am a bear. NOT passed
(Python handles
this for you)

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am a bear."

% self.name
% Bear.population

When calling a
method directly
from a specific
instance of a class,
the self variable is
NOT passed
(Python handles
this for you)

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

I am a bear."

% self.name
% Bear.population

When calling a
method directly
from a specific
instance of a class,
the self variable is
NOT passed
(Python handles
this for you)

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Calhng a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

Hello, world! I am a bear.

My name is Yogi. NOT Passed

I am number 1.

>>> b = Bear("Winnie") (P)’thOn handles
this for you)

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Ca”ing a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

Hello, world! I am a bear.

My name is Yogi. NOT Passed

I am number 1.
2 boaay notle() (Python handles
this for you)

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Calhng a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

Hello, world! I am a bear.

My name is Yogi. NOT Passed

I am number 1.
2 boaay notle() (Python handles
Hello, world! I am a bear. this for you)

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Calhng a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

Hello, world! I am a bear.

My name is Yogi. NOT Passed

I am number 1.

2 boaay notle() (Python handles
Mty name 35 wimnie. this for you)

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

I am a bear."

print “My name is %s.” % self.name

print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')

>>> b.say hello()

Hello, world! I am a bear.
My name is Winnie.

I am number 2.

% Bear.population

When calling a
method directly
from a specific
instance of a class,
the self variable is
NOT passed
(Python handles
this for you)

#14

Scope: self and “class™ variables

>>> class Bear:

population = 0

def init (self, name):
self.name = name
Bear.population += 1

def say hello(self):
print "Hello, world!
print “My name is %s.”

print “I am number %i.”

I am a bear."
self.name
3 Bear.population

>>> a = Bear(“Yogi”)
>>> a.say hello()

Hello, world! I am a bear.

My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')
>>> b.say hello()

Hello, world! I am a bear.

My name is Winnie.
I am number 2.

Here the
bopulation variable
is incremented
each time a new
instance of the
Bear class is
created.

#14

Scope: self and “class™ variables

>>> class Bear:

population = 0

def init (self, name):
self.name = name
Bear.population += 1

def say hello(self):
print "Hello, world! I am a bear."
print “My name is %s.” % self.name
print “I am number %i.” % Bear.population

>>> a = Bear(“Yogi”)

>>> a.say hello() When Calllng

Hello, world! I am a bear.

T methods from a

I am number 1.
>>> b = Bear("Winnie')

o> b.say hello() class, a specific
s T g instance DOES
I am number 2.
need to be passed.
#H14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')

>>> b.say hello()

Hello, world! I am a bear.
My name is Winnie.

I am number 2.

I am a bear."
self.name
3 Bear.population

>>> ¢ = Bear("Fozzie")

When calling
methods from a
class, a specific

instance DOES
need to be passed.

#14

>>> a

Scope: self and “class™ variables

>>> class Bear:

population = 0

def init (self, name):
self.name = name
Bear.population += 1

def say hello(self):
print "Hello, world!

print “My name is %s.”
print “I am number %i.”

Bear (“Yogi”)

I am a bear."
3 self.name
3 Bear.population

>>> a.say hello()

Hello, world! I am a bear.

My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')
>>> b.say hello()

Hello, world! I am a bear.

My name is Winnie.
I am number 2.

>>> ¢ = Bear("Fozzie")
>>> Bear.say hello(c)

When calling
methods from a

class, a specific
instance DOES
need to be passed.

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')

>>> b.say hello()

Hello, world! I am a bear.
My name is Winnie.

I am number 2.

I am a bear."
3 self.name
3 Bear.population

>>> ¢ = Bear("Fozzie")
>>> Bear.say hello(c)
Hello, I am a bear.

When calling
methods from a
class, a specific

instance DOES
need to be passed.

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')

>>> b.say hello()

Hello, world! I am a bear.
My name is Winnie.

I am number 2.

I am a bear."
3 self.name
3 Bear.population

>>> ¢ = Bear("Fozzie")
>>> Bear.say hello(c)
Hello, I am a bear.
My name is Fozzie.

When calling
methods from a
class, a specific

instance DOES
need to be passed.

#14

Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')

>>> b.say hello()

Hello, world! I am a bear.
My name is Winnie.

I am number 2.

I am a bear."
3 self.name
3 Bear.population

>>> ¢ = Bear("Fozzie")
>>> Bear.say hello(c)
Hello, I am a bear.

My name is Fozzie.

I am number 3.

When calling
methods from a
class, a specific

instance DOES
need to be passed.

#14

A Zookeeper’s Travails |

Suppose you are a zookeeper. You have three
bears in your care (Yogi, Winnie, and Fozzie), and
you need to take them to a shiny new
habitat in a different part of the zoo. However,
your bear truck can only support 300 Ibs. Can
you transfer the bears in just one trip?

#I15

A Zookeeper’s Travails |

#16

A Zookeeper’s Travails |

#16

A Zookeeper’s Travails |

#16

A Zookeeper’s Travails |

#16

A Zookeeper’s Travails |

#16

A Zookeeper’s Travails |

#16

A Zookeeper’s Travails |

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

>>> a = Bear("Yogi", 80)

#16

A Zookeeper’s Travails |

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

>>> a
>>> b

Bear("Yogi", 80)
Bear ("Winnie", 100)

#16

A Zookeeper’s Travails |

class Bear:

Q ©

def init (self, name, weight):
self.name = name
self.weight = weight

= Bear("Yogi", 80)
= Bear("Winnie", 100)
= Bear("Fozzie", 115)

#16

A Zookeeper’s Travails |

class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]

#16

A Zookeeper’s Travails |

Class instances in

>>> class Bear:
def init (self, name, weight): Python Can be
self.name = name .
self.weight = weight tl’eated Ill(e an)’
>>> a = Bear("Yogi", 80) Other data type:
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears = [a, b, c] they Can be

assigned to other
variables, put in
lists, iterated over,
etc.

#16

A Zookeeper’s Travails |

>>> class Bear:

def init (self, name, weight):

self.name = name
self.weight = weight

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears = [a, b, c]

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16

>>>

>>>
>>>
>>>
>>>
>>>

A Zookeeper’s Travails |

class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]

total weight = 0

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16

>>>

>>>
>>>
>>>
>>>
>>>
>>>

A Zookeeper’s Travails |

class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]

total weight = 0
for z in my bears:

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16

>>>

>>>
>>>
>>>
>>>
>>>
>>>

A Zookeeper’s Travails |

class Bear:

def init (self, name, weight):

self.name =

name

self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]
total weight = 0
for z in my bears:

total weight += z.weight

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16

>>>

>>>
>>>
>>>
>>>
>>>
>>>

A Zookeeper’s Travails |

class Bear:

def init (self, name, weight):

self.name =

name

self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]
total weight = 0
for z in my bears:

total weight += z.weight

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16

>>>

>>>
>>>
>>>
>>>
>>>
>>>

>>>

A Zookeeper’s Travails |

class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]

total weight = 0
for z in my bears:
total weight += z.weight

total weight < 300

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16

A Zookeeper’s Travails |

>>> class Bear:

def init (self, name, weight):

self.name = name
self.weight = weight

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears = [a, b, c]
>>> total weight = 0
>>> for z in my bears:
total weight += z.weight

>>> total weight < 300
True

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16

A Zookeeper’s Travails Il

Consider now a (marginally) more realistic
scenario, where a bear’s weight changes
when he/she eats and hibernates

H#I17

A Zookeeper’s Travails |l

Object methods can
alter other properties
of the object

#18

A Zookeeper’s Travails |l

>>> class Bear:

Object methods can
alter other properties
of the object

#18

A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):

Object methods can
alter other properties
of the object

#18

A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name

Object methods can
alter other properties
of the object

#18

A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

Object methods can
alter other properties
of the object

#18

A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Ob]eCt methOdS can
alter other properties
of the object

#18

A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Ob]eCt methOdS can
self.weight += amount
alter other properties
of the object

#18

A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Oblect methods can
self.weight += amount
def hibernate(self): alter other properties

of the object

#18

A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): :
self.weight += amount ObleCt methOdS can
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

#18

A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): :
self.weight += amount ObleCt methOdS can
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

#18

A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Oblect methods can
self.weight += amount
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

>>> a = Bear("Yogi", 80)

#18

A Zookeeper’s Travails |l

>>> class Bear:

>>> a
>>> b

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Oblect methods can
self.weight += amount
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

Bear ("Yogi", 80)
Bear ("Winnie", 100)

#18

A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Oblect methods can
self.weight += amount
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

#18

A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Oblect methods can
self.weight += amount
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

#18

A Zookeeper’s Travails |l

>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight

S def eat(self, amount):

.« self.weight += amount

«oe def hibernate(self):

“ee self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

#18

A Zookeeper’s Travails |l

>>> class Bear:

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.
#18

A Zookeeper’s Travails |l

>>> class Bear: >>> a.welight
def init (self, name, weight):
self.name = name
self.weight = weight
def eat(self, amount):
self.weight += amount
def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.
#18

A Zookeeper’s Travails |l

>>> class Bear: >>> a.welight
def init (self, name, weight): 80
self.name = name
self.weight = weight
def eat(self, amount):
self.weight += amount
def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.
#18

A Zookeeper’s Travails |l

>>> class Bear: >>> a.welight
def init (self, name, weight): 80
self.name = name >>> a.eat(20)

self.weight = weight
def eat(self, amount):

self.weight += amount
def hibernate(self):

self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.
#18

A Zookeeper’s Travails |l

>>> class Bear: >>> a.welight
def init (self, name, weight): 80

self.name = name >>> a.eat(20)

self.weight = weight >>> a.welight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.
#18

A Zookeeper’s Travails

>>> class Bear:

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.

>>>

80
>>>

>>>
100

a.weight

a.eat(20)
a.weight

#18

A Zookeeper’s Travails |l

>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight

S def eat(self, amount):

.« self.weight += amount

«oe def hibernate(self):

“ee self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

>>>

80
>>>

>>>
100

a.weight

a.eat(20)
a.weight

#18

A Zookeeper’s Travails

>>> class Bear:

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>

80
>>>

>>>
100

a.weight

a.eat(20)
a.weight

Winnie eats a large pot of honey, while Fozzie hibernates

#18

A Zookeeper’s Travails |l

>>> class Bear:

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>

80
>>>

>>>

100
>>>

o))

.weight

.eat(20)
.weight

.eat(10)

Winnie eats a large pot of honey, while Fozzie hibernates

#18

A Zookeeper’s Travails |l

>>> class Bear:

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>

o))

Q

.weight

.eat(20)
.weight

.eat(10)
.hibernate()

Winnie eats a large pot of honey, while Fozzie hibernates

#18

A Zookeeper’s Travails |l

>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight

S def eat(self, amount):

.« self.weight += amount

«oe def hibernate(self):

“ee self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()

#18

A Zookeeper’s Travails |l

>>> class Bear: >>> a.welight

oo - def init (self, name, weight): 80

cee self.name = name >>> a.eat(20)

«oe self.weight = weight >>> a.welight

500 def eat(self, amount): 100

.« self.weight += amount >>> b.eat(10)

.« def hibernate(self): >>> c.hibernate()
e self.weight /= 1.20 >>> total weight = 0

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

#18

A Zookeeper’s Travails |l

>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight
S def eat(self, amount):
.« self.weight += amount
«oe def hibernate(self):

“ee self.weight /= 1.20
>>> a = Bear("Yogi", 80)

>>> b = Bear("Winnie", 100)

>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>
>>>
>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()
total weight = 0
for z in my bears:

#18

A Zookeeper’s Travails |l

>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight
S def eat(self, amount):
.« self.weight += amount
«oe def hibernate(self):

“ee self.weight /= 1.20
>>> a = Bear("Yogi", 80)

>>> b = Bear("Winnie", 100)

>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>
>>>
>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()
total weight = 0
for z in my bears:
total weight += z.weight

#18

A Zookeeper’s Travails |l

>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight
S def eat(self, amount):
.« self.weight += amount
«oe def hibernate(self):

“ee self.weight /= 1.20
>>> a = Bear("Yogi", 80)

>>> b = Bear("Winnie", 100)

>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>
>>>
>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()
total weight = 0
for z in my bears:
total weight += z.weight

#18

A Zookeeper’s Travails |l

>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight
S def eat(self, amount):
.« self.weight += amount
«oe def hibernate(self):

“ee self.weight /= 1.20
>>> a = Bear("Yogi", 80)

>>> b = Bear("Winnie", 100)

>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>
>>>
>>>

>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()
total weight = 0
for z in my bears:
total weight += z.weight

total weight < 300

#18

A Zookeeper’s Travails |l

>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight
S def eat(self, amount):
.« self.weight += amount
«oe def hibernate(self):

“ee self.weight /= 1.20
>>> a = Bear("Yogi", 80)

>>> b = Bear("Winnie", 100)

>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>
>>>
>>>

>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()
total weight = 0
for z in my bears:
total weight += z.weight

total weight < 300

False

#18

A Zookeeper’s Travails |l

>>> class Bear: >>> a.welight
def init (self, name, weight): 80
self.name = name >>> a.eat(20)
self.weight = weight >>> a.welight
def eat(self, amount): 100
self.weight += amount >>> b.eat(10)
def hibernate(self): >>> c.hibernate()
self.weight /= 1.20 >>> total weight = 0
o oo >>> for z in my bears:
>>> a = Bear("Yogi", 80) «oe total weight += z.weight
>>> b = Bear("Winnie", 100) .«
>>> ¢ = Bear("Fozzie", 115) >>> total weight < 300
>>> my bears=[a, b, c] False

As a result, they are too heavy for the truck
#18

For the remaining skeptics ...

Because of the way Python is set up, you have been
using object-oriented techniques this entire time!

For the remaining skeptics ...

>>> a = Polygon("Polly")

InStantla—tlon (Creating an instance of the class
Polygon) >>> b = “Polygon”
>>> type(a) >>> type(b)

Types

<type 'instance'>
>>> type(type(a))
<type 'type'>

<type 'str'>
>>> type(type(b))
<type 'type'>

Methods

>>> a.print name()
Hi, my name is Polly.
>>> a.perimeter ()

0

>>> b.upper/()
POLYGON

>>> b.replace(“gon”,
Polywog

llwogll)

Because of the way Python is set up, you have been
using object-oriented techniques this entire time!

A More Relevant
Example: Simple N-body
Code

OOPI-nbody.ipynb

